
Eur. Phys. J. B 2, 313–317 (1998) THE EUROPEAN
PHYSICAL JOURNAL B
c©

EDP Sciences
Springer-Verlag 1998

The state space of short-range Ising spin glasses:
the density of states

T. Klotza, S. Schubert, and K.H. Hoffmann

Institut für Physik, TU Chemnitz, 09107 Chemnitz, Germany

Received: 16 July 1997 / Revised: 9 October 1997 / Accepted: 6 November 1997

Abstract. The state space of finite square and cubic Ising spin glass models is analysed in terms of the
global and the local density of states. Systems with uniform and Gaussian probability distribution of
interactions are compared. Different measures for the local state density are presented and discussed. In
particular, the question whether the local density of states grows exponentially or not is considered. The
direct comparison of global and local densities leads to consequences for the structure of the state space.

PACS. 02.70.-c Computational techniques – 05.50.+q Lattice theory and statistics; Ising problems –
75.10.Nr Spin-glass and other random models

1 Introduction

The often very unusual dynamic behaviour of complex sys-
tems like spin glasses [1,2] is significantly determined by
the properties of their state space. One key to understand
the relaxation and aging effects in this class of systems, in
particular for the low-temperature region, is given by the
structure of local minima and barriers in the low-lying en-
ergy landscape. In order to construct models of this land-
scape, which are useful for simulating the non-equilibrium
dynamics, it is necessary to extract and to quantify the
important structural properties of this landscape. Unfor-
tunately, in experiments the state-space structure is only
indirectly accessable. For systems with long-range interac-
tions analytical mean-field-like methods have been applied
to investigate the state-space properties. The situation for
short-range systems is more complicated. Due to the com-
putational effort needed the exact calculation of the en-
ergetically low-lying excitations of a system is restricted
to small system sizes. Nevertheless the analysis of small
sytems can give a first understanding of effects in principle
and help to check model assumptions.

One of the simplest models for complex systems is the
Ising-spin glass. There has been a great amount of research
concerning the long-range SK-model [3]. A few numerical
and experimental works tried to analyse the state-space
structure more or less directly [4,5]. This was mostly done
in order to check the interesting theoretical predictions
for the hierarchical structure of the phase space of the SK
model [6]. For short-range systems the situation is more
unsatisfying. For small ± J model systems a detailed anal-
ysis of the state-space has be made in [7]. It is unclear how
strongly the state-space structure found is influenced by
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the discretness of the interactions. As a counterpart to the
± J systems, usually systems with Gaussian distributed
interactions between nearest neighbours are treated. An
extensive analysis of the morphology of the state space
was undertaken in [8] by use of the so called lid method.

An interesting outcome of these investigations was,
that the local density of states inside a state-space pocket
seem to grow exponentially. Such an exponential increase
of the local density of states with increasing energy would
have drastic thermodynamic consequences. For tempera-
tures below a critical temperature the occupation proba-
bility would reach its maximum at the ground-state en-
ergy. Thus the system is trapped in a certain state-space
valley for a long time or even forever, provided that the
barriers surrounding this pocket are high enough. For in-
creasing temperatures the maximum of the occupation
probability jumps at a critical temperature Tc from the
minimal to the maximal energy of the system. Therefore
the probability to leave the considered valley increases
drastically. The system is no longer trapped in this valley.

This behaviour is not only important from a thermo-
dynamic point of view, but for optimization problems and
methods, too [9]. Assuming there exists such a critical
temperature, the cooling scheme for simulated annealing
methods should be chosen in such a way that the algo-
rithm has found the ground-state valley at a temperature
above the critical one. Otherwise, it may happen that the
algorithm never finds the true ground-state due to the
low probability to jump to other valleys below the critical
temperature.

If the local density of states is exactly exponential,
the critical temperature is sharply defined. However, if
there is no exponential behaviour, the transition might
vanish or is at least smeared out. In this paper we try
to clarify this situation. We analysed finite two- and
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Fig. 1. Global density of states gglobal (ε) for 2d (squares)
and 3d (circles) systems with uniform (full symbols) or Gaus-
sian (open symbols) distribution of interactions averaged over
different realizations of interactions. The lines correspond to
quadratic fits.

three-dimensional systems with respect to their density
of states. Starting from the exact knowledge of all ener-
getically low-lying states we calculated at first the global
density of states. After sorting the states according to the
valley in state space to which they belong, we will dis-
cuss various different measures for the local state density.
Finally we will compare these different measures.

2 Model and methods

In the following we will present results for two- and three-
dimensional Ising-spin systems on square and cubic lat-
tices with randomly chosen interactions between nearest
neighbours and periodic boundary conditions. The lat-
tice size is restricted by computational reasons, and is
L = 8 for the two-dimensional, and L = 4 for the three-
dimensional case. There is no external field applied to the
systems.

We analysed systems with a Gaussian distribution of
interactions as well as systems with a uniform distribu-
tion. A disadvantage of the Gaussian distribution of in-
teractions, in particular for local structure investigations
of the state space, is the possibility of extremely large local
fields. These fields can lead to a crossing of all energy bar-
riers by just a single spin flip. This unphysical drawback
can be overcome by using a uniform distribution, which
is in this sense a counterpart to the Gaussian one. It re-
stricts the maximal strengths of interactions and thus the
maximal local field.

In order to allow the comparison of both distributions
the first two moments have been set equal. As usual the
mean is set to zero and the standard deviation is nor-
malized to unity. If this choice leads to a very similar
state-space structure, both system classes could be used
alternatively.

The basis of the state-space analysis is an exact de-
termination of all energetically low-lying states up to a
given cut-off energy by the method of recursive branch-
and-bound [10]. The main idea of this method is to search
the binary tree of all states. The search can be restricted
by finding lower bounds for the minimal reachable en-
ergy inside a subtree. If this lower bound is higher than
the energy of a suboptimal state already found, it is not
necessary to examine the corresponding subtree. A first
good suboptimal state can be found by recursively solv-
ing smaller subproblems. By adding an energy offset to
the calculated lower bounds it is possible to calculate not
only the ground states, but all states below a given cut-off
energy too.

The obtained states were ordered by increasing en-
ergy using a distributed sort algorithm. Starting from the
ground state and successively increasing the maximal en-
ergy of the considered states all states are sorted accord-
ing to their valley in the configuration space. For a chosen
energy, two states are sorted to the same valley, if one
state can be reached from the other via a series of single
spin flips without exceeding the chosen energy. Thus the
definition of a valley depends on this energy. Each valley
can be addressed by the state with minimal energy inside
the valley. Note, that a valley is joined with a more low-
lying valley, if the considered energy becomes larger than
the barrier between both valleys. Furthermore it should
be noted here, that the definition of a valley of course
depends on the definition of neighbouring spin configura-
tions. As it is done in most investigations we restricted
ourself to consider only single spin flip processes.

3 Results

The global density of states gglobal (ε) (GDOS) is defined
as the number of states with energy ε per spin above the
ground state. Figure 1 shows the logarithm of the global
density of states normalized to the number of spins N
in the system for the 2d and the 3d systems with Gaus-
sian and uniform distribution. The results are averaged
over 20 different realizations of disorder for the Gaussian
distribution, and over 50 samples for the uniform distribu-
tion. The errorbars give an idea of the sample to sample
fluctuations.

The GDOS is significantly higher for the 2d systems
compared to the 3d systems. This is obviously caused
by the different coordination numbers, as can be seen in
Figure 2. The GDOS for the Gaussian distribution is
slightly higher than for the uniform distribution. Never-
theless, there seems to be no qualitative difference between
the two curves.

For all systems the GDOS clearly increases subexpo-
nentially with energy. To quantify this behaviour it is
possible to make an ansatz of the form

g (ε) ∝ exp
(
c+ αε+ γεδ

)
(1)
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Fig. 2. Global density of states gglobal versus energy per bond
for 2d (squares) and 3d (circles) systems with uniform (full
symbols) or Gaussian (open symbols) distribution of interac-
tions averaged over different realizations of interactions. The
lines correspond to power fits.

for small energies ε above the minimal energy. The occu-
pation probability in equilibrium then reads

p (ε) ∝ exp
[
c+ (α− β) ε+ γεδ

]
, (2)

where β denotes the inverse temperature. The extremal
value of such a distribution is reached for

εext =

(
β − α

γδ

)1/(δ−1)

. (3)

The only singular point in equation (3) is at β = α. In
the linear case γ = 0 the maximum of equation (2) jumps
at this value of β from the maximal energy of the sys-
tem for high temperatures to the minimal energy for low
temperatures.

If however γ 6= 0 and δ > 1 the subexponential
behaviour of the DOS as found in our data leads to a
negative coefficient γ. Then it can easily be seen that the
energy of the maximum of equation (2) is positive and fi-
nite for high temperatures, and goes down with decreasing
temperature. At and below T = 1/α the occupation prob-
ability is highest for εext = 0. If the linear term in g (ε)
vanishes (α = 0) and 0 < δ < 1, the maximum energy
goes continuously from the maximal energy of the system
down to the minimal one with decreasing temperature.
Thus there is no sign of a critical behaviour caused by the
DOS.

As a result of the above discussion we chose two dif-
ferent ansatzes for fitting functions in the analysis of our
numerical data. For δ = 2 equation (1) simplifies to a
quadratic polynomial ansatz, which we call in the follow-
ing the quadratic fit. The choice α = 0 leads to a fitting
ansatz without any linear term, which will be called power
fit.

The quadratic fits shown in Figure 1 fit the data quite
well. The ratio of the linear and the quadratic coefficient
corresponds for the 3d systems to an energy of about 0.47
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Fig. 3. Relatively measured LDOS grel versus energy per bond
for 2d (squares) and 3d (circles) systems with uniform (full
symbols) or Gaussian (open symbols) distribution of interac-
tions averaged over different configuration space valleys and
different realizations of interactions. The dashed and the full
line correspond to a quadratic fit and a power fit, respectively.

per spin. The inverse linear coefficients correspond to a
temperature of T ∼ 0.5 in 2d and T ∼ 0.65 in 3d. The
errors of these fit parameters have been estimated. For the
energy per spin it is of the order 0.05 per spin, the error
for the temperature can be estimated to 0.05. The lines in
Figure 2 are power fits, which seem to fit the data quite
well, too. The Gaussian and the uniform distribution differ
only in the coefficients c and γ. The exponents δ are about
0.72 for both distributions. The error is of the order 0.05.

The local DOS (LDOS) is given by the number of
states inside a valley at a given energy. In order to
average the LDOS, it is necessary to clarify the measuring
procedure. We discuss here three different possibilities.

The first one is to start at a high temperature and to
perform a steepest descent algorithm. The LDOS of the
valley the system was trapped in, can then be measured
relative to the minimal energy of this valley. The averaging
will be done over different runs and different realizations
of interactions. We will call the measure defined in this
way the relatively measured LDOS (RLDOS) and denote
it by grel.

The second possibility assumes that the ground-state
of the system is known already. Then the local density of
states can be measured relative to the ground-state energy
instead of the minimal energy of the valley found. We will
call this variant the absolutely measured LDOS (ALDOS)
and denote it by gabs. If the averaging procedures for grel

and gabs are restricted to the ground-state valley, both
variants are equivalent and result in the averaged local
density of ground-state valleys (GLDOS), which will be
denoted by ggs.

It should be noted here, that in practice the averag-
ing will be performed not over different runs, but over all
valleys found up to the cut-off energy. This may cause a
systematic error due to valleys with local minima higher
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Fig. 4. Absolutely measured LDOS gabs versus energy per
bond ε/d for 2d (squares) and 3d (circles) systems with uni-
form (full symbols) or Gaussian (open symbols) distribution of
interactions averaged over different realizations of interactions
and different valleys. The lines correspond to quadratic fits.

than the cut-off energy. Obviously, this effect could only
be important for grel.

As for the GDOS, the RLDOS as a function of the
energy per bond ε/d is quite equivalent for 2d and 3d
systems (Fig. 3). However, for energies higher than 0.02
per bond there seem to be systematic deviations. In both
dimensions grel is slightly higher for the Gaussian distri-
bution. Both fitting ansatzes fit the numerical data quite
well, as can be seen by the examples given in Figure 3.
The linear coefficients of the quadratic fits correspond to
critical temperatures of about 0.85 in the 3d case. The
ratio between the linear and the quadratic coefficients is
equivalent to an energy of about 0.6 (2d) and 0.9 (3d).
The alternative power fit results in an exponent δ ∼ 0.85
for both distributions.

For the absolutely measured DOS it is not possible
to map the results for 2d to the results in 3d by taking
into account the different coordination numbers (Fig. 4).
The planar systems result in a lower ALDOS compared to
the cubic systems. Moreover the power fits lead to expo-
nents δ, which are very close to unity. The only exception
is the 2d uniform distributed system with δ ∼ 1.17. The
quadratic fits result in ratios between the linear and the
quadratic coefficients larger than 1.0 per spin (2d Gaus-
sian), and larger than 2.0 per spin (3d), which is almost
the inverse ground-state energy per spin. The exception
is again the 2d uniform distributed system with a ratio of
about 0.3 per spin. All in all the ALDOS grows almost
exponentially with energy, and the linear coefficients cor-
respond to temperatures of about 0.82 in 3d and 0.71 or
0.87 for 2d systems with Gaussian or uniform distribution,
respectively.

For the averaged LDOS of the ground-state valleys the
2d uniform distributed case seems to be an exception too
(Fig. 5). It is not clear, whether this is really an effect
or just a problem of the statistical errors. The ggs versus
energy per bond curves for the other cases agree quite
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Fig. 5. Local density of states in the ground-state valleys ggs

versus energy per bond ε/d for 2d (squares) and 3d (circles)
systems with uniform (full symbols) or Gaussian (open sym-
bols) distribution of interactions averaged over different real-
izations of interactions and different valleys. The lines corre-
spond to quadratic fits.

well. The power fits lead to an exponent δ between 0.77
and 0.89. According to the ratio of the linear and the
quadratic term of the quadratic fits, the deviations from
the linear behaviour are of the order unity for energies
between 0.6 and 0.9 per spin. The linear terms correspond
to temperatures of about 0.5 (2d) and 0.65 (3d), which
agree with the GDOS values.

In Figure 6 the different DOS measures are compared
for the 3d uniform distributed case. With increasing en-
ergy all valleys are joined successively with more low-lying
valleys. If there is essentially only the ground-state val-
ley left, the different DOS measures become equivalent.
This seems to be the case at an energy of about 0.13 per
spin. For all lower energies the global DOS, which counts
the states in all existing valleys, is certainly larger than
the DOS of the ground-state valleys. Because gabs is av-
eraged over the ground-state valley and more high-lying
valleys and gabs is always lower than the ground-state val-
ley DOS ggs, for absolutely measured energies the local
DOS of the high-lying valleys is smaller than the GLDOS.
On the other hand the relatively measured RLDOS grel,
which measures the DOS relatively to the minimal energy
of a valley, is always larger than the GLDOS. Therefore
the more high lying valleys must have larger local densities
of states than the ground-state valley measured relatively
to the minimal energy of these valleys.

4 Summary

We investigated the global and the local DOS for square
and cubic Ising spin glass systems with a Gaussian and
with a uniform probability distribution of interactions,
respectively. The quantitative differences between the 2d
and the 3d systems are mostly caused by their different
coordination numbers. Although the first two moments
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Fig. 6. Comparison of the different DOS measures for the 3d
uniform distributed case.

of the chosen distributions of interactions were set equal,
the DOS for the Gaussian systems is slightly higher than
for the uniform distributed systems. However there is no
significant qualitative difference. Therefore it should be
possible to use both distributions alternatively for inves-
tigations of the state-space structure.

From the direct comparison of the different DOS mea-
sures it follows, that at a given absolute energy most of
the valleys have a lower LDOS than the ground-state val-
ley. On the other hand, the more high lying valleys have a
higher LDOS measured relatively to the minimal energy
of the considered valley. Thus we get a picture of the state
space with small energetically low-lying valleys which have
high energy barriers and wide energetically high-lying val-
leys with low energy barriers.

The existence of a large ground-state valley in the sys-
tem could explain, why simple heuristic and approxima-
tive optimizing algorithms are often able to find very good
sub-optimal states in problems of this kind. In a first ap-
proximation the probability to find the ground-state val-
ley of a system by a random search at a given energy
is defined by the ratio between the DOS of the ground-
state valley and the global DOS. In Figure 6 this ratio
is for high energies close to unity and decreases for lower
energies. Therefore a simple search algorithm can easily
find the true ground-state valley at high energies (or high
temperatures). With decreasing energy or temperature the
chance to hit the right sub-valley decreases. Thus the algo-
rithm will find sub-optimal solutions, but not necessarily
the optimal state.

A second feature of the state space picture seen here is,
that for valleys which start at a high energy the RLDOS
grows faster with energy than for valleys which start at a
lower energy. As the LDOS should determine most of the
non-equlibrium thermodynamic properties seen in real or
computer experiments, these properties will depend on
the energy range at which the system is investigated. This

should be kept in mind while approximating ground-state
or low-temperature properties by the investigation of en-
ergetically high-lying valleys.

The more detailed quantitative analysis of the DOS
shows that only the absolutely measured local DOS gabs

grows almost exponentially. All other measures for the
local DOS and the global DOS grow clearly subexponen-
tially. In all these cases the applied two trial fits with a
quadratic and a power ansatz, respectively, describe the
numerical data for the logarithm of the DOS quite well.

For the quadratic fits the corrections to the linear be-
haviour become of the order unity for energies of about
0.5 per spin. The linear coefficients correspond to tem-
peratures, which are for the 3d systems in the region of
the transition temperature found for the Gaussian sys-
tems [11]. However, although there should only be a zero-
temperature transition in 2d, the temperatures resulting
from the quadratic fits are about 0.5. The power fits dif-
fer in the absolute terms and the coefficients of the power
terms. The exponents are with values about 0.7 signifi-
cantly different to a linear behaviour. Therefore there is
at least no sharply defined transition temperature, below
which a system is trapped in a valley.

The question whether the form of the local DOS leads
to a transition at all remains unclear. To decide this, a
further analysis of the occupation probability of a valley
with respect to the distribution of energy barriers of this
valley would be necessary. Furthermore the barrier distri-
bution combined with the density of local minima will give
a better understanding of the physical meaning and the
connections between the different LDOS measures.

It should be noted here that the definition of the dif-
ferent DOS measures does not depend on the underlying
model. Therefore the quantitative analysis of these prop-
erties should also give a better insight into the state space
structure of similar physical and optimization problems.
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